1 Graphs

Definition. A graph G is a finite nonempty set, V(G), of objects, called vertices, together with a set, E(G), of unordered pairs of distinct vertices. The elements of E(G) are called Edges.

Ter	mino	logies	1
TOL	iiiiio	108105	-

- $e = u, v \in E(G)$
- we say that u and v are **adjacent** vertices
- e is **incident** with vertices u and v.
- e joins u and v
- vertex adjacent to vertex u are called **neighbours** of u. The set of neighbours of u is denoted by N(u)

Definition. Two graphs G_1 and G_2 are **isomorphic** if there exist a bijection $f : V(G_1) \rightarrow V(G_2)$ such that f(u) and f(v) are adjacent in G_2 if and only if u and v are adjacent in G_1 Remember to modify the information above.

Definition. The number of edges incident with a vertex v is called the **degree** of v

Theorem. For any graph G we have

$$\sum_{v \in V(G)} deg(v) = 2|E(G)|$$

also known as Handshaking Lemma

Corollary. The number of vertices of odd degree in a graph is even.

Corollary. The average degree of a vertex in the graph H is

 $\frac{2|E(G)|}{|v(G)|}$

Terminologies 2

A graph in which every vertex has degree k, for some fixed k, is called a **k-regular** graph.

Definition. A Complete graph is one in which all pairs of distinct vertices are adjacent. The complete graph with p vertices is denoted by $K_p, p \ge 1$

2 Bipartite

Definition. A graph in which the vertices can be partitioned into two sets A and B, so that all edges join a vertex in A to a vertex in B, is called a **bipartite graph**, with bipartition(A,B)

Terminologies 3

The complete bipartite graph $K_{m,n}$ has all vertices in A adjacent to all vertices in B, with |A| = m, |B| = n

Figure 4.11: The complete bipartite graph $K_{2,3}$

Definition. For $n \ge 0$, the n-cube is the graph whose vertices are the $\{0, 1\}$ strings of length n, and two strings are adjacent if and only if they differ in exactly one position.

Terminologies 4

- |V| of n-cube is 2^n
- |E| of n-cube is $n \times 2^{n-1}$
- n-cube is bipartite
- n-cube is connected

3 Characterizing bipartite graph

Lemma. An odd cycle is not bipartite.

Theorem. A graph is bipartite if and only if it has no odd cycles.

4 Walks and Paths

Definition. A Subgraph of a graph G is a graph whose vertex set is a subset U of V(G) and whose edge set is a subset of those edges of G that have both vertices in U.

spanning subgraph is graph with all vertices but not all edges. proper subgraph is graph which is not equal to G.

Theorem. if there is a walk from vertex x to vertex y in G, then there is a path from x to y

Corollary. *let* x, y, z *be vertices of* G. *If there is a path from* x *to* y *in* G *and a path from* y *to* z, *then there is a path from* x *to* z *in* G.

5 Cycles

Definition. A cycle is a connected graph that is regular of degree 2.

Definition. Alternate **Path**: The subgraph we get from a cycle by deleting one edge is called a path.

Terminologies 5

- A cycle with n edges is called an n-cycle or a cycle of length n.
- Shortest possible cycle in a graph is a 3-cycle.
- A spanning cycle in a graph is known as a Hamilton Cycle.

Theorem. If every vertex in G has degree at least 2, then G contains a cycle.

Definition. The girth of a graph G is the length of the shortest cycle in G.

Connected

Definition. A graph G is **connected** if, for each two vertices x and y, there is a path from x to y.

Theorem. Let G be a graph and let v be a vertex in G. If for each vertex w in G there is path from v to w in G, then G is connected.

Definition. A Component of G is a subgraph C of G such that

- a) C is connected
- b) No subgraph of g that properly contains C is connected.

6 Cuts

Definition. Given a graph G and $X \subseteq V(G)$, let $\delta_G(X)$ denote the **cut** of X in G, meaning the set of edges of G with one endpoint in X and one endpoint in $V(G)\setminus X$.

Theorem. A graph G is not connected if and only if there exist a proper subset of V(G) such that the cut induced by X is empty.

7 Eularian Circuit

Definition. An **Eularian Circuit** of a graph G is a closed walk that contains every edge of G exactly once.

Theorem. Let G be a connected graph, then G has an Eularian Circuit if and only if every vertex has even degree.

Definition. An edge e of G is a **Bridge** if G-e ($G \setminus e$) has more components than G

Lemma. if $e = \{x, y\}$ is a bridge of a connected graph, then $g - e(g \setminus e)$ has precisely two components; furthermore x and y are in two different components.

Theorem. An edge e is a bridge of a graph if and only if it is not contained in any cycle of G.

Corollary. If there are two distinct paths from vertex u to vertex v in G, then G contains a cycle.

Terminologies 6

If graph G has no cycles, then each pair of vertices is joined by at most one path.

8 Tree

Definition. A tree is a connected graph with no cycles.

Definition. A *forest* is a graph with no cycles.

Terminologies 7

Every tree is a forest but every forest is not a tree.

Lemma. if u and v are vertices in a tree T, then there is a unique u, v-path in T.

Lemma. Every edge of tree T is a bridge

Theorem. If T is a tree, then

$$|E(T)| = |V(T)| - 1$$

Corollary. If G is a forest with k components, then

$$|E(T)| = |V(T)| - k$$

Definition. A leaf in a tree is a vertex of degree 1.

Theorem. A tree with at least two vertices has atleast two leaves.

Terminologies 8

• The number of leaves (vertex of degree 1) in a tree is given by

$$n_1 = 2 + \sum_{r \ge 3} (r - 2) n_r$$

where r is the degree of vertex, and n_r is the number of vertex of degree r.

• A tree that contains a vertex of degree r has at least r vertices of degree one.

9 Spanning trees

Definition. A spanning subgraph which is also a tree is called a spanning tree.

Theorem. A graph G is connected if and only if it has a spanning tree.

Corollary. I G is connected with p vertices and q = p - 1 edges, then G is tree.

Theorem. If T is a spanning tree of G and e is an edge not in T, then T + e contains exactly one cycle C. Moreover if e' is any edge on C, then T + e - e' is also a spanning tree of G.

Theorem. If T is a spanning tree of G and e is an edge in T, then T - e has 2 components. If e' is in cut induced by one of the components, then T - e + e' is also a spanning tree of G.

10 Planar Graphs

Definition. A graph G is **planar** if it has a drawing in the plane so that its edges intersect only at their ends, and so that no two vertices coincide. The actual drawing is called **Planar Embedding** of G.

Terminologies 9

- A graph is planar if and only if each of it's component is also planar
- A planar embedding partition the plane into connected regions called faces
- the outer face in the planar embedding is unbounded.
- the subgraph formed by the vertices and edges in a face is called **boundary** of the face.
- Two faces are **adjacent** if they are incident with a common edge
- Boundary Walk

- The number of edges in the boundary walk of face f is called the **degree** of the face f.
- A bridge of a planar embedding is always incident with just one face.
- A bridge of a planar embedding is always contained in the boundary walk twice, one for each side.
- bridge contributes 2 to the degree of the face with which it is incident.
- Every edge of a cycle in incident with exactly two faces, and is contained in the boundary walk of each face precisely once.
- every edge in a tree is a bridge. so the planar embedding of a tree T has a single face/

Theorem. if we have a planar embedding of a connected graph G with faces f_1, \ldots, f_s , then

$$\sum_{i=1}^s deg(f_i) = 2|E(G)|$$

Also known as Face Shaking Lemma

Corollary. If the connected graph G has a planar embedding with f faces, the average degree of a face in the embedding is $\frac{2|E(G)|}{f}$

10.1 Euler's Formula

Theorem. Let G be a connected graph with p vertices and q edges. If G has a planar embedding with f faces, then

p - q + f = 2

Terminologies 10

For a given planar graph, the number of faces is always the same, regardless of how you draw it.

10.2 Nonplanar Graphs

Lemma. If G contains a cycle, then in a planar embedding of G, the boundary of each face contains a cycle

Lemma. Let G be a planar embedding with p vertices and q edges. If each face of G has degree at least d^* , then $(d^*-2)q \leq d^*(p-2)$

Theorem. In a planar graph G with $p \ge 3$ vertices and q edges, we have

$$q \leq 3p - 6$$

Figure 1: $K_{3,3}$ and K_5

Corollary. K_5 is not planar **Corollary.** A planar graph has a vertex of degree at most five. this only means atleast one vertex has degree less than equal to 5 **Theorem.** In a bipartite planar graph G with $p \ge 3$ vertices and q edges, we have

 $q \leq 2p - 4$

Lemma. $K_{3,3}$ is not planar.

10.3 Kuratowski's Theoram

Definition. An **Edge subdivision** of a graph G, is obtained by applying the following operation, independently, to each edge of G. replace the edge by a path of length 1 or more, if the path has length m > 1, then there are m - 1 new vertices, and m - 1 new edges created, if the path has length m = 1, then the edge is unchanged.

Theorem. A graph in not planar if and only if it has a subgraph that is an edge subdivision of K_5 or $K_{3,3}$

11 Colouring and Planar Graph

Definition. A k-colouring of a graph G, is a function from V(G) to a set of size k (whose elements are called colours), so that adjacent vertices always have different colours. A graph with a k-colouring is called **k-colourable** graph

Theorem. A graph is 2-colourable if and only if it is bipartite.

Theorem. K_n is n-colourable, and not k-colourable for any k < n

Theorem. Every planar graph is all 4,5,6-colourable. Read Proof